Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Chemosphere ; 287(Pt 3): 132334, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34563766

RESUMO

In previous works, a low-cost predisinfection column that combined coagulation-flocculation and GAC filtration was proposed for combination with electrodisinfection in the successful treatment of highly faecal polluted surface water. In this work, this column is adapted for the treatment of pore water by transforming the coagulation chamber into a chemical reactor with lime and replacing the GAC of the filter with ion exchange resins. This adapted system can soften water, remove nitrate and condition water for very efficient electrochemical disinfection, where 4 logs and 3 logs in the removal of E. coli and P. aeruginosa, respectively, were reached using commercial electrochemical cells, i.e., CabECO ® or MIKROZON®. The availability and low cost of the technology are strong points for usage in poor areas of developing countries.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Escherichia coli , Filtração , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 417: 126078, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992923

RESUMO

This work aims to shed light on the scale-up a combined electrokinetic soil flushing process (EKSF) with permeable reactive barriers (PRB) for the treatment of soil spiked with clopyralid. To do this, remediation tests at lab (3.45 L), bench (175 L) and pilot (1400 L) scales have been carried out. The PRB selected was made of soil merged with particles of zero valent iron (ZVI) and granular activated carbon (GAC). Results show that PRB-EKSF involved electrokinetic transport and dehalogenation as the main mechanisms, while adsorption on GAC was not as relevant as initially expected. Clopyralid was not detected in the electrolyte wells and only in the pilot scale, significant amounts of clopyralid remained in the soil after 600 h of operation. Picolinic acid was the main dehalogenated product detected in the soil after treatment and mobilized by electro-osmosis, mostly to the cathodic well. The transport of volatile compounds into the atmosphere was promoted at pilot scale because of the larger soil surface exposed to the atmosphere and the electrical heating caused by ohmic losses and the larger interelectrode gap.


Assuntos
Recuperação e Remediação Ambiental , Herbicidas , Poluentes do Solo , Carvão Vegetal , Solo , Poluentes do Solo/análise
3.
Chemosphere ; 279: 130525, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33866102

RESUMO

This work focuses on the treatment of gaseous perchloroethylene (PCE) using electro-scrubbing with diamond electrodes and cobalt mediators. PCE was obtained by direct desorption from an aqueous solution containing 150 mg L-1, trying to a real pollution case. The electro-scrubber consisted of a packed absorption column connected with an undivided electrochemical cell. Diamond anodes supported on two different substrates (tantalum and silicon) were used and the results indicated that Ta/BDD was more successful in the production of Co (III) species and in the degradation of PCE. Three experimental systems were studied for comparison purposes: absorbent free of Co (III) precursors, absorbent containing Co (III) precursors, and absorbent containing Co (III) precursors undergoing previous electrolysis to the electro-scrubbing to facilitate the accumulation of oxidants. The most successful option was the last, confirming the important role of mediated electrochemical processes in the degradation of PCE. Trichloroacetic acid (TCA) and carbon tetrachloride (CCl4) were found as the primary reaction products and ethyl chloroacetate esters were also identified. A comprehensive mechanism of the processes happening inside electro-scrubber is proposed.


Assuntos
Tetracloroetileno , Poluentes Químicos da Água , Cobalto , Diamante , Eletrodos , Eletrólise , Gases , Oxirredução
4.
J Environ Manage ; 265: 110566, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275236

RESUMO

This work focuses on disinfection of water using electrolysis with diamond coatings avoiding or minimizing the formation of hazardous chlorates and perchlorates using a special type of commercial cells designed by CONDIAS (Itzehoe, Germany) in two different sizes: the CabECO and the MIKROZON cells. In these cells, the electrolyte that separates the anode and cathode is a proton exchange membrane. This helps to minimize the production of perchlorate and this behavior is enhanced in the smallest cell for which the very low contact times between the electrodes and the water allows to avoid the production of perchlorates when operating in a single-pass mode, which becomes a really remarkable point. In this paper, we report tests in which we demonstrate this outstanding performance and we also explain the differences observed in the two cells operating with the same water.


Assuntos
Cloratos , Poluentes Químicos da Água , Diamante , Desinfecção , Eletrodos , Alemanha , Oxirredução , Percloratos
5.
Sci Total Environ ; 725: 138379, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32278177

RESUMO

This work focuses on disinfection of water using electrolysis with boron doped diamond (BDD) coatings and faces this challenge by comparing the performance of two different cells manufactured by CONDIAS GmbH (Izehoe, Germany): CONDIACELL® ECWP and CabECO cells. They are both equipped with diamond electrodes, but the mechanical design is completely different, varying not only by geometry but also by the flow conditions. ECWP is a flow-through cell with perforated electrodes while the CabECO cell is a zero-gap cell with a proton exchange membrane as a solid polymer electrolyte (SPE) separating the anode and cathode. At 0.02 Ah dm-3 both cells attain around 3-5 logs pathogen removal, but design and sizing parameters give an advantage to the CabECO: it can minimize the production of chlorates and perchlorates when operating in a single-pass mode, which becomes a really remarkable point. In this paper, we report tests in which we demonstrate this outstanding performance and we also explain the differences observed in the two cells operating with the same water.

6.
J Environ Manage ; 262: 110364, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250826

RESUMO

In this work, a three-step process (adsorption-desorption-electrolysis) is evaluated as an interesting approach for the removal of organochlorinated compounds (clopyralid, lindane and perchloroethylene) with different physical properties (solubility and vapor pressure) from low concentrated wastewater. First steps are based on the adsorptive capacity of granular active carbon (GAC) particles to retain organics and on the solvent capacity of methanol to extract them to concentrated solution and regenerate GAC. In the last step of electrolysis with conductive diamond electrodes, the degradation of pesticide is projected, as well as the recovery of methanol. Results show that clopyralid, lindane and PCE are efficiently retained in GAC, although adsorption efficiency depend on pollutant/GAC ratio and physicochemical properties of pollutant. Pretreatment allows the concentration of clopyralid and PCE solutions up to 8 times, but worse results are obtained in case of lindane solutions. Electrolysis of concentrated methanol solution seems to be more efficient than electrolysis of diluted aqueous wastes, mainly in the case of clopyralid. In all cases, electrochemical degradation fits a first order kinetics confirming mixed oxidation mechanisms with diffusion control of the direct processes and mediated oxidation. Results obtained in terms of current efficiency and energy consumption of electrolysis step point out the lower operation cost of concentrated liquid wastes and encourage further works on the development of cost-effective combined processes for the treatment of diluted solutions polluted with polar compounds (such as clopyralid).


Assuntos
Poluentes Químicos da Água , Adsorção , Eletrodos , Eletrólise , Oxirredução , Águas Residuárias
7.
J Hazard Mater ; 392: 122282, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32105951

RESUMO

Four different technologies have been compared (photolysis, ZVI + photolysis, electrolysis and ZVI + electrolysis) regarding the: (1) degradation of clopyralid, (2) extent of its mineralization, (3) formation of by-products and main reaction pathways. Results show that photolysis is the less efficient treatment and it only attains 5 % removal of the pollutant, much less than ZVI, which reaches 45 % removal and that electrolysis, which attains complete removal and 78 % mineralization within 4 h. When ZVI is used as pre-treatment of electrolysis, it was obtained the most efficient technology. The identification of transformation products was carried out for each treatment by LCMS. In total, ten products were identified. Tentative pathways for preferential clopyralid degradation for all processes were proposed. This work draws attention of the synergisms caused by the coupling of techniques involving the treatment of chlorinated compound and sheds light on how the preferential mechanisms of each treatment evaluated occurred.

8.
Chemosphere ; 246: 125781, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31918095

RESUMO

This work presents the development of the electrodialysis/electro-oxidation (EDEO) technology, assessing the role of the pollutant and the modelling of the system in order to look for the key aspects for the development of the technology. According to the results obtained, it can be concluded that electrodialysis can be properly used to concentrate clopyralid, having the selected ionic exchange membranes (AMX) an adsorption capacity of 1.64 ± 0.26 mg cm-2. Moreover, it was observed that BDD anodes exhibit a higher degradation and mineralization current efficiencies than MMO when using electro-oxidation (EO). The role of the supporting electrolyte was also assessed, observing a slight better performance of BDD with sulphate (maximum mineralization current efficiency of 80%) and a much superior degradation efficiency with chloride when selecting MMO as anode material. Regarding the EDEO technology, it was checked that this process only overcomes the performance of EO when using MMO anodes, a result that is explained by the ratio between degradation and transport rates. Finally, a simple model was presented and successfully used to predict the degradation rate constants and to simulate the performance of EDEO under different scenarios. These simulations confirm that the transport rate needs to overcome the degradation rate in order to assure a better performance of the EDEO system compared to the conventional EO. Moreover, the simulations explain the results obtained in the present and previous works revealing the key for a further development of the EDEO technology in the future.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental/métodos , Modelos Químicos , Praguicidas , Diamante , Eletrodos , Oxirredução , Sulfatos
9.
Sci Total Environ ; 713: 136647, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31955107

RESUMO

In this work, nine types of combination advanced oxidation processes/zero-valent iron (AOP-ZVI) were tested, in order to determine if any of these combinations demonstrate good chances as pretreatment for the biological degradation processes of organochlorinated pollutants. To do this, the changes undergone in the respirometric behavior, toxicity and short-term biodegradability were compared. The three AOPs studied were anodic oxidation with mixed metal oxides anodes (AO-MMO), with boron doped diamond anodes (AO-BDD) and photolysis and they were evaluated in three different modes: without any addition of ZVI, with ZVI-dehalogenation as pre-treatment and with ZVI-dehalogenation simultaneous to the AOP treatment. Clopyralid has been used as a model of chlorinated hydrocarbon pollutant. Results show that technologies proposed can successfully treat wastes polluted with clopyralid and the biological characteristics of the waste are significantly modified by dehalogenating the waste with ZVI, either previously to the treatment or simultaneously to the treatment, being the information provided by the three techniques very important in order to evaluate later combinations of the advanced oxidation technologies with biological treatments.


Assuntos
Eletrólise , Boro , Diamante , Eletrodos , Oxirredução , Fotólise
10.
Chemosphere ; 240: 124912, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31574437

RESUMO

In this work, the combination of biological and electrochemical processes to mineralize oxyfluorfen has been studied. First, an acclimatized mixed-culture biological treatment was used to degrade the biodegradable fraction of the pesticide, reaching up to 90% removal. After that, the non-biodegraded fraction was oxidised by electrolysis using boron-doped diamond as the anode. The results showed that the electrochemical technique was able to completely mineralize the residual pollutants. The study of the influence of the supporting electrolyte on the electrochemical process showed that the trace mineral solution used in the biological treatment was enough to completely mineralize the oxyfluorfen, resulting in total organic carbon removal rates that were well-fitted by a first-order model with a kinetic constant of 0.91 h-1. However, the first-order degradation rate increased approximately 20% when Na2SO4 was added as supporting electrolyte, reaching a degradation rate of 1.16 h-1 with a power consumption that was approximately 70% lower.


Assuntos
Eletrólise/métodos , Éteres Difenil Halogenados/química , Éteres Difenil Halogenados/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Reatores Biológicos/microbiologia , Boro , Diamante , Eletrodos , Eletrólise/instrumentação , Cinética , Oxirredução , Praguicidas/química , Praguicidas/metabolismo , Sulfatos/química , Eliminação de Resíduos Líquidos/métodos
11.
J Environ Manage ; 248: 109289, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31344559

RESUMO

This study deals with the development of efficient and economic electrochemical treatment processes to confront the treatment of liquid wastes containing non-polar organochlorine pesticides. In previous works, it was demonstrated that it is possible to use electrocoagulation (EC) as a concentration technique for a model organochlorine pesticide (oxyfluorfen). Within this framework, the present work describes a process for the degradation of wastes containing non-polar organochlorines (oxyfluorfen or lindane) in two consecutive stages: 1) a first stage of concentration by electrocoagulation; 2) a second stage of electrochemical degradation by electro-oxidation (EO) or electro-Fenton (EF). The first result reached in the present work is that it is possible to remove close to 50% of both pollutants using EO and more that 94% using EF. Additionally, it was proved that the addition of a pre-concentration stage decreases by a factor of 20 the power consumption needed to deplete by EO the same amount of the initial pollutant. Moreover, when EF process is performed to the concentrated stream, the power consumption is further reduced, getting values (for 1-log removal) as low as 14.51 kWh m-3 for oxyfluorfen decrease and 49.7 kWh m-3 for lindane. These results strengthen the fact that the removal efficiency increases with the concentration of the pollutant and demonstrate that the combination of concentration steps and electrochemical degradation technologies is an efficient and promising alternative for the degradation of non-polar organochlorines.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Oxirredução
12.
Chemosphere ; 234: 132-138, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31207419

RESUMO

In this work, it is evaluated the more critical point of a new electrochemical technology for the removal of organic pollutants based on the regeneration of granular active carbon (GAC) (that can be used efficiently to concentrate aqueous wastes) with methanol and in the electrochemical treatment of methanol with conductive diamond electrochemical oxidation (CDEO). The system proposed was studied with lindane and clopyralid. Results show that it is possible the complete removal of the raw pesticides and intermediates formed by electrolyzing these species in methanol media and that both sodium chloride and sodium hydroxide can be used as supporting electrolyte to increase the conductivity of methanol. The cell voltages obtained are quite similar to those obtained during the electrolysis of aqueous wastes. The electrolysis of these dilute solutions does not generate significant concentrations of intermediates and the depletion of the raw pollutant fits well to a pseudo-first order kinetic model. Oxidants capable to oxidize iodide to iodine are produced during the electrolysis in methanol media and they have an important influence on the degradation of the pollutants. The new technology, based on the concentration of the pollutant before electrolysis, allows to remove completely pollutants from soil and soil washing fluids in a more efficient way, although the concentration of pollutant attained and, hence, the efficiency of the overall removal process depends on the adsorption equilibria of the pollutant in aqueous and methanol media.


Assuntos
Eletrólise/métodos , Hexaclorocicloexano/isolamento & purificação , Ácidos Picolínicos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Eletrodos , Eletrólitos/química , Hexaclorocicloexano/química , Cinética , Oxirredução , Praguicidas/química , Ácidos Picolínicos/química , Poluentes do Solo/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
13.
J Hazard Mater ; 369: 577-583, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30818122

RESUMO

In this work, a new soil washing process in which Soil-Liquid extraction technology is enhanced by adding iron particles (zero valent iron nanoparticles or granules) was investigated to remove clopyralid from spiked soils. This novel approach can be efficiently used to extract chlorinated hydrocarbons from soil and aims to obtain soil-washing wastes with low content of hazardous chlorinated species. The iron particles used were subsequently removed from the treated soil using magnetic fields. Then, the complete mineralization of the produced soil washing effluents was successfully achieved by applying anodic oxidation with diamond anodes in an electrochemical flow cell. Results demonstrated that, opposite to what it was initially expected, no improvements in the efficiency of the electrochemical process were observed by adding iron particles during the soil washing. This behavior is explained in terms of the lower electrochemical reactivity of the dechlorinated derivatives produced. Although results are not as promising as initially expected, it does not mean a completely negative outcome for the use of ZVI during washing, because the hazardousness of the pollutants is rapidly decreased in the initial stages of the soil-washing, opening the possibility for the combination of this technology with other processes, such as biological treatment.

14.
J Environ Manage ; 231: 570-575, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388654

RESUMO

This work presents a techno-economic study of the scaling-up of the electrochemically-assisted soil remediation (EASR) process of polluted soil. Four scales have been selected for the study: laboratory, bench, pilot and prototype, with a capacity of treating a volume of soil of 1 × 10-4, 2 × 10-3, 0.11 and 21.76 m3, respectively. This study analyses the technical information produced by studies carried out at each scale, and informs about the fixed costs (construction of the electrokinetic remediation reactor, installation of auxiliary services and purchase of analytical equipment) and variable costs (start-up, operation and dismantling of the test) derived from running a test at each of the evaluated scales. The information discussed in based on the experience gained with many evaluations carried out over the last decade at these scales. This information can provide useful guidance for developing a scaling-up of the EASR for many researchers starting on the evaluation of this important environmental remediation technology.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Poluição Ambiental , Solo
15.
J Biotechnol ; 282: 70-79, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-29990569

RESUMO

This paper is focused on the assessment of the production of algae in batch bioreactors. Hydraulic retention time, carbon loading rate and light color were the inputs of the study and algae production the main output. Bioreactors were operated in semi-continuous mode and tests lasted two months, more than two times the period required to meet a steady-state response. This steady-state was verified with plateau responses in both, soluble parameters and suspended solids. Results points out the great relevance of temperature. Likewise, they show that green light improves the production of algae, as well as long HRT and high CLR. Maximum production rates attained were in the range 4-14 mg d-1 L-1. The ratio COD /TSS for this biofuel was almost constant (3.13 mg COD mg-1 TSS) but the quality of the product obtained in terms of the Mean Oxidation State of Carbon is completely different. Longer HRT leads to lower MOSC and hence to potentially more valuable fuels.


Assuntos
Reatores Biológicos , Chlorella vulgaris , Luz , Microalgas , Análise da Demanda Biológica de Oxigênio , Carbono/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/metabolismo , Chlorella vulgaris/efeitos da radiação , Clorofila/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Microalgas/efeitos da radiação , Fatores de Tempo
16.
Sci Total Environ ; 640-641: 629-636, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29870938

RESUMO

This work aims to describe the removal of clopyralid from clay soils using electrokinetically assisted soil flushing (EKSF) coupled with a permeable reactive barrier (PRB), consisting of beds of Granulated Activated Carbon (GAC). To do this, two strategies have been evaluated on bench-scale electroremediation facilities (175 dm3): electrokinetic adsorption barrier (EKAB) and reversible electrokinetic adsorption barrier (REKAB). Likewise, to clarify the contribution of the different mechanisms to remediation process results are compared to those obtained in a reference test (without applying an electric field) and to results obtained in the EKSF of soils polluted with compounds with different polarity and vapour pressure. Results show that during EKAB and REKAB tests, clopyralid is removed from the soil by adsorption in PRB, electrokinetic transport and, very less decisively, by evaporation. The application of polarity reversion attains a higher retention of clopyralid in the activated carbon-PRB and a better regulation of pH because of the neutralization of H+ and OH- generated in the electrolyte wells. After 30 days of operation, the removal of clopyralid by EKAB is 45% while it reaches 57% in the case of REKAB.

17.
J Environ Manage ; 222: 135-140, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29807263

RESUMO

This work presents the design and evaluation of a new concept of pre-disinfection treatment that is especially suited for highly polluted surface water and is based on the combination of coagulation-flocculation, lamellar sedimentation and filtration into a single-column unit, in which the interconnection between treatments is an important part of the overall process. The new system, the so-called PREDICO (PRE-DIsinfection Column) system, was built with low-cost consumables from hardware stores (in order to promote in-house construction of the system in poor countries) and was tested with a mixture of 20% raw wastewater and 80% surface water (in order to simulate an extremely bad situation). The results confirmed that the PREDICO system helps to avoid fouling in later electro-disinfection processes and attains a remarkable degree of disinfection (3-4 log units), which supplements the removal of pathogens attained by the electrolytic cell (more than 4 log units). The most important sizing parameters for the PREDICO system are the surface loading rate (SLR) and the hydraulic residence time (HRT); SLR values under 20 cm min-1 and HRT values over 13.6 min in the PREDICO system are suitable to warrant efficient performance of the system.


Assuntos
Águas Residuárias , Purificação da Água , Desinfecção , Filtração , Poluição da Água
18.
Chemosphere ; 199: 477-485, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29454170

RESUMO

In the treatment of a polluted soil, the pH has a strong impact on the development of different physicochemical processes as precipitation/dissolution, adsorption/desorption or ionic exchange. In addition, the pH determines the chemical speciation of the compounds present in the system and, consequently, it conditions the transport processes by which those compounds will move. This question has aroused great interest in the development of pH control technologies coupled to soil remediation processes. In electrokinetic remediation processes, pH has usually been controlled by catholyte pH conditioning with acid solutions, applied to cases of heavy metals pollution. However, this method is not effective with pollutants that can be dissociated in anionic species. In this context, this paper presents a study of the electrokinetic remediation of soils polluted with 2,4-Dichlorophenoxyacetic acid, a common polar pesticide, enhanced with an anolyte pH conditioning strategy. A numerical study is proposed to evaluate the effectiveness of the strategy. Several numerical tests have been carried out for NaOH solutions with different concentrations as pH conditioning fluid. The results show that the anolyte pH conditioning strategy makes it possible to control the pH of the soil and, consequently, the chemical speciation of pollutant species. Thus, it is possible to achieve an important flux of pesticide into the anolyte compartment (electro-migration of anionic species and diffusive transport of acid species). This way, it possible to maximise the pesticide accumulation in this compartment, allowing a much more effective removal of pollutants from the soil than without the anolyte pH conditioning strategy.


Assuntos
Eletroquímica/métodos , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Praguicidas/química
19.
Chemosphere ; 195: 771-776, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29289023

RESUMO

In this work, synthetic wastewater polluted with ionic liquid 1-butyl-3-methylimidazolium (Bmim) bis(trifluoromethanesulfonyl)imide (NTf2) undergoes four electrolytic treatments with diamond anodes (bare electrolysis, electrolysis enhanced with peroxosulfate promoters, irradiated with UV light and with US) and results obtained were compared with those obtained with the application of Catalytic Wet Peroxide Oxidation (CWPO). Despite its complex heterocyclic structure, Bmim+ cation is successfully depleted with the five technologies tested, being transformed into intermediates that eventually can be mineralized. Photoelectrolysis attained the lowest concentration of intermediates, while CWPO is the technology less efficient in their degradation. However, the most surprising result is that concentration of NTf2- anion does not change during the five advanced oxidation processes tested, pointing out its strong refractory character, being the first species that exhibits this character in wastewater undergoing electrolysis with diamond. This means that the hydroxyl and sulfate radicals mediated oxidation and the direct electrolysis are inefficient for breaking the C-S, C-F and S-N bounds of the NTf2- anion, which is a very interesting mechanistic information to understand the complex processes undergone in electrolysis with diamond.


Assuntos
Diamante/química , Eletrólise/métodos , Eletrodos , Eletrólise/instrumentação , Radical Hidroxila/química , Oxirredução , Sulfatos/química , Raios Ultravioleta , Águas Residuárias/química , Poluentes Químicos da Água/química
20.
J Hazard Mater ; 339: 232-238, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28654787

RESUMO

In this work the complete treatment of soil spiked with lindane is studied using surfactant-aided soil-washing (SASW) to exhaust lindane from soil and electrolysis with diamond anodes to mineralize lindane from the soil washing fluid (SWF) waste. Results demonstrated that this technological approach is efficient and allow to remove this hazardous pollutant from soil. They also pointed out the significance of the ratio surfactant/soil in the efficiency of the SASW process and in the performance of the later electrolysis used to mineralize the pollutant. Larger values of this parameter lead to effluents that undergo a very efficient treatment which allows the depletion of lindane for applied charges lower than 15AhL-1 and the recovery of more than 70% of the surfactant for the regeneration of the SWF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...